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Abstract

In this paper we investigate the use of path-integral formalism and the concepts
of entropy and traffic in the context of molecular motors. We show that
together with time-reversal symmetry breaking arguments one can find bounds
on efficiencies of such motors. To clarify this technique we use it on one
specific model to find both the thermodynamic and the Stokes efficiencies,
although the arguments themselves are more general and can be used on a wide
class of models. We also show that by considering the molecular motor as a
ratchet, one can find additional bounds on the thermodynamic efficiency.

PACS numbers: 05.70.Ln, 05.20.−y

1. Introduction

Understanding the functioning of living organisms has always been one of the most challenging
and most interesting aspects of science. It has been known for a while now that molecular
motors play an important role in the working of these organisms [1, 2]. The term is actually
used for a whole collection of small machines. However, they all have in common that
they transform chemical energy into work, and that thermal fluctuations are essential to their
working. The energy needed comes mainly from the hydrolysis reaction of ATP ↔ ADP + P,
see e.g. [3–5].

The chemical reaction cycle that drives the motor is itself driven by maintaining a high
concentration of ATP in the motor’s environment, and is thus essentially out of equilibrium.
Furthermore, the fact that molecular motors are very small means that we are dealing with
mesoscopic systems for which the dynamics involve stochastic elements. Computations
of e.g. efficiency of these molecular motors must therefore be quite different from their
thermodynamic analogues. The question of efficiency is indeed important and has been
widely discussed already in the literature, see [6–11].

In this paper we present a general method for obtaining bounds of efficiencies based on
the relation between time symmetry breaking and entropy production. These results are quite
general and do not depend specifically on a model, even though we will illustrate the argument
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by using one specific model. We give bounds on both the usual thermodynamic and the Stokes
efficiency. Molecular motors are part of a wider class of systems called Brownian motors or
ratchets [12–14]. We will use this relation between molecular motors and ratchet dynamics
to derive other, less explicit, but possibly better bounds for the efficiency. Also here we show
that general probabilistic arguments can replace the thermodynamic procedure of computing
efficiencies once there is a clear identification of the path-dependent entropy fluxes.

A well-known example of a molecular motor is kinesin, which moves cargo inside the cell
away from the nucleus by ‘walking’ along microtubules, with a step size of 8 nm and loads
of the order of pN, multiplying to work of the order of kBT at room temperature [3]. This is a
small scale for which a stochastic description is best fitting.

The hydrolysis reaction mentioned above will be modelled by a chemical cycle, described
by a Markov jump process. In a molecular motor this chemical cycle induces movement of
a load in a spatial direction, thus doing work. The spatial movement of the system will be
described here by an overdamped Langevin equation, due to the viscosity of the medium in
which these motors live. The coupling between the chemical cycle and the spatial movement
is the so-called ‘ratchet effect’: to each chemical state of the system corresponds a different
potential landscape, and by switching between these, a directed movement arises. The system
is driven out of equilibrium. In the chemical state this is due to the maintained chemical
potential, which is the actual energy input. The spatial component is in a sense also driven
out of equilibrium by a non-gradient ‘load’. However, the system will move in a direction
opposite to this load, performing work as an output.

We start in section 2 by describing the model and introducing some preliminary concepts.
In section 3 we will look at the entropy flux, the entropy production rate and the positivity of
the entropy production using the path space formalism. In section 4 it will be shown that, in
accordance with the second law of thermodynamics, both the thermodynamic efficiency and
the Stokes efficiency are bounded. Section 5 treats the motor as a ratchet. Using symmetry
arguments from the ratchet formalism, we examine the efficiency more closely.

This paper is intended to illustrate two things: first of all a method to check the usual
bounds on efficiencies—that they are smaller than 1. The model and the bounds on its
efficiencies have been described already in [6]. We focus here on the physical (model-
independent) argument, which revolves around the path space formalism, entropy production
and the second law of thermodynamics. Secondly, we illustrate how the ratchet formalism can
produce possibly better bounds. In the model we use to illustrate the method, the new bound
is given by (29).

2. The model

We consider a model for a molecular motor, coupled to a thermal bath at an inverse temperature
β, which has two degrees of freedom: a position x on a one-dimensional circle with length L,
modelling a periodic potential landscape, and a chemical state i ∈ {1, . . . , N} with periodic
boundary conditions: N + 1 ≡ 1. As time evolves, the system will therefore cover a trajectory
(path) in the space of possible configurations. Such a path starting at time zero and ending at
a later time T will be denoted by ω = (xt , it )0�t�T .

The dynamics in the spatial direction x is taken to be an overdamped diffusion process
(defined with the Itô convention):

dxt =
[
f (xt )

ξ
− φ′

0(xt , it )

ξ

]
dt +

√
2D dBt (1)

2
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where ξ is the viscous drag coefficient, D is the free diffusion coefficient related by the Einstein
relation to the inverse temperature: β = 1

ξD
. Furthermore, f is an external load, which is

a nonconservative forcing, and φ0(xt , it ) is a potential, which depends on the chemical state
the motor is in. The prime denotes here the derivative with respect to x. Finally, dBt is the
standard Gaussian white noise.

The dynamics of the chemical state is governed by the transition rates kx(i, i + 1) and
kx(i, i−1), which depend on the position on the circle. Here we impose the physical condition
of local detailed balance:

kx(i, i + 1)

kx(i + 1, i)
= eβ[φ0(x,i)−φ0(x,i+1)]+β�μ(i,i+1) (2)

which just states that the rate for jumping to the right divided by the rate for jumping to the
left is equal to the exponential of the entropy produced by jumping to the right. Indeed, the
entropy change in going from state i to i + 1 at the position x is β times the heat flux between
the system and the environment, which itself is equal to minus the change in energy (φ0) plus
the chemical work �μ(i, i + 1). Note that �μ(i, i + 1) = −�μ(i + 1, i). In general every
full chemical cycle (i → i + N ) consumes a chemical energy �μ = ∑

i �μ(i, i + 1). When
this �μ is not zero, it is seen in (2) that detailed balance is broken. The chemical potential
thus provides the energy input for the motor, driving the chemical reaction cycle. Let pt(x, i)

be the probability density of finding the motor in position x in chemical state i at time t. From
the dynamics described above, one can prove that this probability density evolves according
to a set of coupled Fokker–Planck equations:

∂pt (x, i)

∂t
= −∂Jpt

(x, i)

∂x
+ Ipt

(x, i − 1, i) − Ipt
(x, i, i + 1) (3)

where Jpt
(x, i) is the probability current in the spatial direction for the ith state and

Ipt
(x, i, i + 1) is the probability current from state i to state i + 1.

These probability currents are given by

Ipt
(x, i, i + 1) = pt(x, i)kx(i, i + 1) − pt(x, i + 1)kx(i + 1, i) (4)

Jpt
(x, i) = 1

ξ
pt (x, i)[f (x) − φ′

0(x, i)] − Dp′
t (x, i). (5)

Taking the left-hand side of (3) zero gives the equation for the stationary measure, which
we will henceforth denote by ρ(x, i). It is easily seen that when f and �μ(i, i + 1) are
put to zero, the process satisfies detailed balance, with the equilibrium measure given by the
Gibbsian distribution

ρ0(x, i) = 1

Z
e−βφ0(x,i). (6)

In the following it will be convenient to define such an equilibrium process as a reference
process. More specifically with rates k0

xt
given by

k0
x(i, i + 1) = kx(i, i + 1) e− β�μ(i,i+1)

2

k0
x(i + 1, i) = kx(i + 1, i) e

β�μ(i,i+1)

2

and with the same Langevin dynamics as in (1) with f = 0.

3. Entropy production

3.1. Path space formalism

A useful way of describing a nonequilibrium system is via the distribution over its possible
trajectories (paths), denoted by Pp0(ω) with p0 being some initial measure. A consequence

3
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of the Markov property is that one can write that Pp0(ω) = p0(x0, i0)P (ω|x0, i0), where the
second factor is now independent of the initial measure. Such path space distributions are
best described as relative densities with respect to a reference process, denoted by P0. For this
purpose we take the reference equilibrium process as defined at the end of the last section.
Given an initial distribution p0(x, i), the ratio of the probality of a path ω is given by

dPp0(ω)

dP 0
ρ0

(ω)
= p0(x0, i0)

ρ0(x0, i0)

P (ω|x0, i0)

P 0(ω|x0, i0)
=:

p0(x0, i0)

ρ0(x0, i0)
e−A(ω) (7)

where A is called the ‘action’. The action will be a sum of the action for a jump process (see
e.g. appendix 1 of [15]) and the action for a diffusion process (see e.g. [16]):

A(ω) = −β

2

∫ T

0
dxt ◦ f (xt ) +

1

2ξ

∫ T

0
dt f ′(xt )

− β

4ξ

∫ T

0
dt f (xt )[f (xt ) − 2φ′

0(xt , it )] −
∑
t�T

log

(
kxt

(it− , it )

k0
xt
(it− , it )

)

+
∫ T

0
dt

∑
j

[
kxt

(it , j ) − k0
xt
(it , j )

]
(8)

where the first term of the action is a Stratonovitch-type stochastic integral, and
∑

t�T means
the sum over all the times that the system jumps to another chemical state. By it− and it we
denote respectively the chemical state before the jump and after the jump.

With the path space distribution, one can compute the expectation values of observables.
When started from an initial measure p0, the expectation value of an observable O(ω) is
denoted by

〈O(ω)〉p0
:=

∫
dPp0(ω)O(ω)

where the integral means the integral over all possible paths.

3.2. Entropy flux

It is well known ([17]) that the time-antisymmetric part of the action of a stochastic process
gives the entropy flux S(ω) between the system and its surroundings. Let θ be the time-reversal
operator, acting on paths as θω = (xT −t , iT −t )t . The entropy flux is then given by

S(ω) = A(θω) − A(ω)

= β

∫ T

0
dxt ◦ f +

∑
t�T

[
log

(
kxt

(it− , it )

k0
xt
(it− , it )

)
− log

(
kxt

(it , it−)

k0
xt
(it , it−)

)]

= β

∫ T

0
dxt ◦ f + β

∑
t�T

�μ(it− , it ). (9)

The two terms in this path-dependent entropy production already have a clear meaning. The
first term comes from the motion in the spatial direction. In fact this first term is the entropy
flux one would see, if the motor were only allowed to move in the spatial direction (for
example by setting all rates k to zero). Vice versa, the same is true for the second term, which
comes from the motion in the chemical direction. We see that one full chemical cycle gives
an entropy exchange between the system and environment of β�μ, as expected.

4
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The path space average of the entropy flux, starting with an initial distribution p0, can be
computed, again through the theory of Markov jump processes and diffusions:

〈S(ω)〉p0 = β

∫ T

0
dt

∫ L

0
dx

∑
i

Jpt
(x, i)f (x)

+ β

∫ T

0
dt

∫ L

0
dx

∑
i

Ipt
(x, i, i + 1)�μ(i, i + 1). (10)

3.3. Entropy production rate

The total entropy production of the universe Su caused by this process is not only the entropy
flux, but also the entropy change of the system itself. The entropy of the system is given by
the relative entropy of the measure it is in, relative with respect to the equilibrium reference
measure:

s(p) = −
N∑

i=1

∫ L

0
dx p(x, i) log

p(x, i)

ρ0(x, i)
. (11)

The change in the entropy of the system is then given by

s(pT ) − s(p0). (12)

Summing the two contributions ((10) and (12)) to the total entropy change Su, it is then most
elegantly written as

ST
u (p0) = −

〈
log

dPpT
(θω)

dPp0(ω)

〉
p0

(13)

where pT is the time-evolved measure determined by the Fokker–Planck equations (3).
The Markov property of our process makes that we can write the entropy production as
ST

u (p0) = ∫ T

0 dt σ (pt ) where σ(pt ) = limT ↓t
1

T −t
ST −t

u (pt ) is called the entropy production
rate, straightforwardly computed to be

σ(p) = βξ

∫
dx

∑
i

J 2
p(x, i)

p(x, i)

+ β

∫
dx

∑
i

Ip(x, i, i + 1)[�μ(i, i + 1) + �(x, i) − �(x, i + 1)] (14)

where �p(x, i) = φ0(x, i) + 1
β

log p(x, i).
Just as for the entropy flux, this entropy production rate consists of two separate terms,

each having a clear meaning. For the first term, think of a new dynamics in which all chemical
transition rates are set to zero. Then there is only motion in the spatial direction, and the
entropy production for this process would exactly be the first term in (14). Suppose instead
that we forbid all motion in the spatial direction, by letting ξ → ∞. Then only the chemical
reactions determine the process, and the entropy production for such a process is exactly the
second term in (14). We will therefore write

σ(p) = σD(p) + σJ (p) (15)

to denote that the entropy production is the sum of the entropy production of the diffusion
process and of the jump process.

5



J. Phys. A: Math. Theor. 42 (2009) 445003 E Boksenbojm and B Wynants

3.4. Positivity of the entropy production

The definitions of the entropy flux and entropy production rate through path space measures
have the advantage that one can easily prove their positivity: because of the normalization
of the path space measures we have for any measures p, q and time T, and actually for any
(well-behaved) dynamics,〈

e− log(
dPp(ω)

dPq (θω)
)

〉
p

=
〈

dPq(θω)

dPp(ω)

〉
p

= 1. (16)

Jensen’s inequality then dictates that〈
log

(
dPp(ω)

dPq(θω)

)〉
p

� 0. (17)

Using the definition of the entropy production rate σ we find

σ(p) � 0 (18)

which is in essence the second law of thermodynamics: change of total entropy of the world
is positive. As said before, this entropy production rate can be written as a sum of an entropy
production rate due to the diffusion in the spatial direction (σD) and an entropy production rate
due to the jump process in the chemical direction (σJ ). As the argument of positivity above is
quite general and does not depend on the specific dynamics of the system, it is also valid for
dynamics where we set some rates to zero or let ξ → ∞. In particular this means that the two
terms of (15) are separately positive:

σD(p) � 0 σJ (p) � 0.

4. Efficiency

To prove that the thermodynamic efficiency is bounded by one is not difficult. One just has to
realize that the total stationary entropy production of the process is the heat flux between the
system and the environment. This heat flux consists of the energy going into the system Qin,
in our case through the chemical reaction cycle, and the power output Wout by moving a load.
The fact that the stationary entropy production has to be positive then immediately gives that
Qin − Wout � 0, or equivalently that the efficiency Wout

Qin
� 1.

But there is more. First of all, one has to realize that molecular motors, like the one
described here, are essentially two processes which are coupled. The entropy production of
the whole process is then the sum of the entropy productions of the two separate processes.
This is just a consequence of the Markov property. There is however one important difference:
the stationary measure of the whole process is not the product of the stationary measures
of the separate processes. This has as a consequence that the stationary entropy production of
the whole process is rather the sum of transient entropy productions of the separate processes.
Still, these entropy productions are both positive, which leads to the bound on the Stokes
efficiency, as illustrated for our model below.

4.1. Thermodynamic efficiency

Here we will work in the stationary case, i.e. the measure will be chosen to be pt = ρ the
stationary measure. There is an immediate consequence of the (stationary) Fokker–Planck
equation (3):

∂V

∂x
= 0, with V := L

∑
i

Jρ(x, i)

6



J. Phys. A: Math. Theor. 42 (2009) 445003 E Boksenbojm and B Wynants

ν(i) − ν(i + 1) = 0, with ν :=
∫

dx Iρ(x, i, i + 1)

which unambiguously defines the average velocity V and the mean chemical reaction rate ν.
As usual, the efficiency is the (average) mechanical work that the motor can perform on the
load, divided by the (average) chemical energy that is provided. With the above definitions,
the thermodynamic efficiency is then clearly equal to

ηT = − f̄ V

ν�μ
(19)

where f̄ = 1
L

∫ L

0 dxf (x) is the average force on the circle. The minus sign in the definition
is there because for the motor to work, one needs that ν�μ > 0 and f̄ V < 0. As we know,
the second law of thermodynamics should give a bound on this efficiency, namely that it is
smaller than 1. Indeed, in the stationary case the entropy flux (10) becomes

〈S(ω)〉ρ = βT [V f̄ + ν�μ]. (20)

When the system is in the stationary state, its Shannon entropy (11) is constant in time, so that

〈S(ω)〉ρ = T σ(ρ) � 0. (21)

Together with (20), this gives that ηT � 1.

4.2. Stokes efficiency

In many cases the goal of a molecular motor is to carry cargo across a viscous environment
(e.g. protein transport within a cell). In this case the useful power of the motor is just the
viscous drag force times the average velocity: ξV · V . While the total power input from
the environment is the chemical input through the chemical potential, and mechanical input
through the external force f . Note that f is now not regarded as a load, but as an external
force. Because of this, the Stokes efficiency was introduced in ([18]) to have a more useful
definition of efficiency than the previous thermodynamic one:

ηS = ξV 2

f̄ V + ν�μ
. (22)

We will show here that for this model, the Stokes efficiency is bounded by one, just as the
thermodynamic efficiency. Again, this will follow from the second law of thermodynamics,
by considering the entropy production rate σ(μ) as the sum of the two entropy production
rates σD and σJ for the mechanical and the chemical cycle. We already proved that these two
quantities are positive (see section 3.4). Note, however, that these two quantities are entropy
productions for restricted dynamics, one where the chemical movement is prohibited and the
other where mechanical movement is not possible. This also means that the stationary measure
of the molecular motor is not the stationary measure for these restricted processes. Luckily,
this poses no problem, because the positivity of the entropy was proven for any measure p.
We thus have that σD(ρ) � 0 and σJ (ρ) � 0. We find then

1 � σD(ρ)

σD(ρ) + σJ (ρ)
=

βξ
∫

dx
∑

i ρ(x, i)
( Jρ(x,i)

ρ(x,i)

)2

β[fextV + ν�μ]
. (23)

This inequality leads to the bound on the Stokes efficiency:

ηS = ξV 2

fextV + ν�μ
= ξ

[∑N
i=1

∫
Jρ(x) dx

]2

fextV + ν�μ

7
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�
βξ

∫
dx

∑
i

J 2
ρ

ρ

β [fextV + ν�μ]

� 1

where the first inequality is an immediate consequence of the positivity of the variance of Jρ

ρ
.

5. The motor as a ratchet

In this section we will show that the molecular motor as modelled here is exactly a ratchet
as defined in [12]. We will then use properties of ratchets to derive another, possibly better,
bound on the thermodynamic efficiency.

5.1. Another symmetry

The quantity that determines the power output of the motor is the current in the spatial direction.
For a specific trajectory ω, this current jT is defined by the following relation:∫

dx g(x)jT (x) :=
∫ T

0
dxt ◦ g(xt ) (24)

where again a stochastic integral is taken with the Stratonovich interpretation. With this
definition, one can compute that 〈jT (x)〉μ = ∫ T

0 dt Jμt
(x).

It is obvious that jT is independent of the specific sequence of chemical states it went
through, it only depends on the movements in the spatial direction. It will therefore be
convenient to define a new symmetry operation � as follows: �ω := (xt , N + 1 − it )t . The
current jT (x) then satisfies

�jT (x) = jT (x) θjT (x) = −jT (x)

which makes it a ratchet current, exactly as defined in [12].
We now have two symmetry operations: the time reversal θ , and the ‘chemical reversal’

�. With this, we can repeat the argument of the positivity of the entropy production, but now
with our new symmetry operator. Let us therefore split the action (8) into four parts, according
to these symmetries. The antisymmetric part of the action under time reversal was already
seen to be the entropy production. The time-symmetric part of the action was also earlier
examined in e.g. [16, 19], and named traffic T , so that

A = 1
2 [T − S].

Using the symmetry operator �, the action splits further as follows:

A = 1
4 [T+ − T− − S+ + S−]

where the plus and minus signs denote respectively the symmetric and antisymmetric parts of
the functions under �, e.g. S− = [�S − S]. For the argument to work, it is necessary that the
reference equilibrium process is also symmetric under �. Even though it is always possible
to find such a reference, to make computations simpler, we will assume that the reference
process we defined earlier is already symmetric under �:

φ0(x, i) = φ0(x,N + 1 − i)

k0
x(i, j) = k0

x(N + 1 − i, N + 1 − j).

8
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With this, we repeat the argument of section 3.4, but now for �θ instead of θ . This argument
gives here that 〈

log
ρ(x0, i0)

ρ(xT ,N + 1 − iT )

〉
ρ

+
1

2
〈S+(ω) + T−(ω)〉ρ =

〈
log

dPρ(ω)

dPρ(�θω)

〉
ρ

� 0

which means in particular that

〈T−(ω)〉ρ � −2

〈
ln

ρ(x0, i0)

ρ(xT ,N + 1 − iT )

〉
ρ

− 2βT V f̄ . (25)

As this equality is true for any time T, and as the first term on the right-hand side of this
inequality is not extensive in time, one sees that

1

T
〈T−(ω)〉ρ � −2βV f̄. (26)

We see therefore that the time-symmetric part of the action plays an important role in ratchets
and thus in molecular motors. Let us therefore try to compute T− for our model.

5.2. The efficiency revisited

In this case it is easily seen that

T−(ω) = 2
∫ T

0
dt

∑
j

[
kxt

(N + 1 − it , j ) − kxt
(it , j )

]
.

After a straightforward calculation, one finds

〈T−(ω)〉ρ = 2T
∑

i

[
cosh

(
β

2
�μ−(i, i + 1)

)
− 1

]
τ(i, i + 1)

+ 2νT
∑

i

sinh

(
β

2
�μ−(i, i + 1)

)
(27)

where we have defined �μ−(i, i + 1) = �μ(N + 1 − i, N − i) − �μ(i, i + 1), and

τ(i, i + 1) =
∫ L

0
dx ρ(x, i)kx(i, i + 1) + ρ(x, i + 1)kx(i + 1, i)

is the symmetric counterpart of the current in the chemical direction.
It follows now from (26) that

−βV f̄ �
∑

i

[
cosh

(
β

2
�μ−(i, i + 1)

)
− 1

]
τ(i, i + 1)

+ ν
∑

i

sinh

(
β

2
�μ−(i, i + 1)

)
. (28)

We find a new boundary for the thermodynamic efficiency

ηT �
∑

i

τ (i, i + 1)

βν�μ

[
cosh

(
β

2
�μ−(i, i + 1)

)
− 1

]

+
1

β�μ

∑
i

sinh

(
β

2
�μ−(i, i + 1)

)
. (29)

Even though this is not a very explicit formula, one can see the importance of fluctuations:
the quantity τ(i, i + 1) deals with the average number of jumps between states i and i + 1, thus
being a measure of the total activity in the chemical direction. When τ(i, i + 1)/ν is big, then
the efficiency of the motor may also be big. Furthermore, this traffic plays a fundamental role
in fluctuation theory, see e.g. [16, 19].
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6. Conclusions

We showed in this paper that the boundedness of the efficiencies (both thermodynamic
and Stokes) for a large class of models for molecular motors can be deduced with model-
independent arguments. These general probabilistic arguments are based on the path space
formalism and the relation between time-symmetry breaking and entropy production. By
also showing that such a motor can be seen as a ratchet other boundaries were found for the
thermodynamic efficiency.

To find more explicit results approximations should be made, or otherwise a numerical
analysis. This is beyond the scope of this text, e.g. in [8, 10, 11] such approximations and
numerical analyses are made, however by using a different method. Therefore, it could
be interesting for further research to make these approximations and/or numerical analyses,
starting from our method, to compare with the results in these papers.
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